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Received 29 July 1998

Abstract. This paper analyses the Noether symmetries and the corresponding conservation
laws for Chern–Simons Lagrangians in dimensiond = 3. In particular, we find an expression
for the superpotential of Chern–Simons gravity. As a byproduct the general discussion of
superpotentials for third-order natural and quasi-natural theories is also given.

1. Introduction

The interplay between symmetries, conservation laws and variational principles for
Lagrangian dynamical systems have been under consideration for a long time, starting from
the celebrated work by E Noether. Our aim in this paper is to calculate conserved quantities
for Chern–Simons gravity in dimensiond = 3. Chern–Simons theories in fact exhibit many
interesting and important properties. First, they are based on secondary characteristic classes
discovered in [1] and there is some hope that they will give new topological invariants for
knots and three-manifolds. Moreover, they appeared in physics as natural mass terms for
gauge theories and for gravity in dimension three, and after quantization they lead to a
quantized coupling constant as well as a mass [2]. They have also found applications to a
large variety of physical problems, among which we quote anyons and quantum Hall effect;
when the gauge group is the inhomogeneous Lorentz group then such a theory is equivalent
to standard gravity. Chern–Simons gauge theory is also an example of a topological field
theory [3]. It should also be remarked that, as it has been recently shown, Chern–Simons
Lagrangians are the only obstructions to an equivariant inverse problem of the calculus
of variations ind = 3 [4]. Finally, the Chern–Simons term is related to the anomaly
cancellation problem ind = 2 conformal field theories [5].

This paper is organized as follows. For our later convenience, we shall start from a
short, elementary and self-contained exposition of a variational approach to the problem
of conservation laws in field theories. A more systematic approach can be found e.g. in
[6–8], while for a rigorous mathematical presentation‡ we refer the reader to [9–11]. In
section 3 we collect some material from our earlier papers concerning superpotentials and
in particular we shall list the explicit formulae which are necessary to calculate them in
all theories of order at most three. Section 4 deals with Chern–Simons gauge Lagrangians
and we discuss how general formulae for superpotentials apply in this case. Some results
of section 4 are finally used in section 5 to calculate the energy–momentum complex for
Chern–Simons gravity.

† On leave from the Institute of Theoretical Physics, University of Wroc law, pl Maksa Borna 9, PL-50-204 Wroc 
law, Poland. E-mail address: borow@ift.uni.wroc.pl
‡ It involves a variational calculus on jet bundles.
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2. Preliminaries

Let us consider a field theory over a spacetime manifoldM of arbitrary dimensiond,
describing the behaviour of an arbitrary fieldφ by means of a LagrangianL ≡ L(φ, ∂xφ, . . .)
of arbitrary order. The action functional will be

I (φ) =
∫
D

L dx

where the integration is performed over a domainD of the manifoldM of independent
variablesx ≡ (xµ); the field configuration (i.e. the set of all dependent variables) is
represented here byφ†. Variation (i.e. a functional derivative)δI of I with respect to
an arbitrary (infinitesimal) variationδφ of φ leads to the variationδL of the Lagrangian
itself. This, in turn, can be rearranged into two parts according to the ‘first variation
formula’‡

δL = δL

δφ
δφ + ∂µ%µ. (1)

The first term consists of the Euler–Lagrange expression (field equations):

δL

δφ
= ∂L

∂φ
− ∂µ

(
∂L

∂φµ

)
+ ∂µ∂ν

(
∂L

∂φµν

)
− · · ·

and therefore vanishes on shell, i.e. when the fieldφ satisfies the equations of motion. The
second part (boundary term) is a divergence of%µ ≡ %µ(φ, δφ), where

%µ =
[
∂L

∂φµ
− ∂ν

(
∂L

∂φµν

)]
δφ + ∂L

∂φµν
δφν + · · · . (2)

This boundary term is usually neglected since it does not contribute to the equations of
motion (and it is killed on the boundary∂D after imposing suitable boundary conditions on
δφ). However, this second contribution is physically important: in fact, it does contribute
to conservation laws.

Recall that a variation, sayδ∗φ, is called an(infinitesimal) symmetryof the actionI if the
corresponding variationδ∗L can be written as a divergence (i.e.δ∗L = ∂µτµ) without using
the equations of motion. Of course, this depends heavily on the transformation properties
of L: for example, if the Lagrangian transforms as a scalar (i.e.L(φ) = L(φ + δ∗φ)), then
one hasδ∗L = 0.

Therefore, for the variation implemented by a symmetry transformationδ∗φ, equation (1)
can be rewritten under the following form

δL

δφ
δ∗φ = −∂µ(%µ∗ − τµ) (3)

where%µ∗ = %µ(φ, δ∗φ). A Noether currentthen arises

Eµ ≡ Eµ(φ, δ∗φ) = %µ∗ − τµ (4)

which is conserved on shell. One writes

∂µE
µ = 0 mod

δL

δφ

or, equivalently,

∂µE
µ ≈ 0

† For simplicity we drop an internal field index, e.g.φA.
‡ Here the usual Einstein summation convention over repeated indices is adopted.
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and calls it aweak conservation law. It then follows from the Poincaré lemma that (at
least locally) there exists on shell a skew-symmetric quantityUµν = −Uνµ, called a
superpotential, such that

Eµ ≈ ∂νUµν

i.e.Eµ differs from the divergence∂νUµν by a quantity which vanishes on shell. Notice that
the superpotential so defined depends explicitly on field equations. However, if a formula on
Uµν can be ‘analytically’ prolonged to all field configurations† then a quantity eµ = ∂νUµν

defined for all field configurations is automatically conserved also ‘off shell’, i.e.

∂µeµ ≡ 0

independently of the dynamics. In this case we call this astrong conservation law.

3. Second theorem of Noether and superpotentials

In this paper we shall be interested in so-calledlocal symmetries(and second Noether’s
theorem). This corresponds to the situation when the variationδ∗φ depends on some (finite)
number of arbitrary functionsθ = {θ i(x)} i = 1, . . . , N over spacetimeM together with
their derivatives up to some (finite) order, says. In other words one has

δ∗φ ≡ δθφ = ϕiθ i + ϕρi ∂ρθ i + · · · + ϕρ1...ρs
i ∂ρ1 . . . ∂ρs θ

i . (5)

The orders of the highest derivative involved in this field transformation law is called the
geometric orderof the transformation. If the Lagrangian is of orderk, i.e. it involves up to
k derivatives of the fields, the integerr = s + k is then called thetotal order of the theory
[9].

Supposing now‡ that the total order of the theory is at most 3, then both sides of
equation (3) become differential operators acting onθ , where

Eµ ≡ Eµ(θ) = tµi θ i + tµρi ∂ρθ i + tµρσi ∂ρ∂σ θ
i (6)

δL

δφ
δθφ ≡ W(θ) = wiθi + wρi ∂ρθ i + wρσi ∂ρ∂σ θ i . (7)

Notice that in (6) and (7), in order to preserve the uniqueness of the decomposition, one
should assume the following symmetry conditions for the highest coefficients§:

t
µ[ρσ ]
i = 0 w

[ρσ ]
i = 0.

Replacing now (6) and (7) into equation (3) and calculating the divergence∂µE
µ explicitly,

one gets an identity which holds true for arbitrary functionsθ i . Therefore the total
coefficients resulting in front ofθ i , ∂αθ i , etc . . . , should vanish independently. This
produces, in fact, a differential indentity involving the Euler–Lagrange expression, so-called
generalized Bianchi identity[10], which in this case reads as follows

wi − ∂νwνi + ∂ν∂ρwνρi = 0. (8)

The coefficients ofW as given by (7) vanish on shell because of the Euler–Lagrange
equations, so that∂µEµ ≈ 0 holds. It appears, in this case, that the Noether current admits
a representation of the form

Eµ = Ẽµ + ∂ρUµρ ≡ Ẽµ + eµ (9)

† This is always the case for so-called local symmetries (see below).
‡ We slightly extend here the formalism developed in [10], where proofs of our statements can also be found.
§ We shall use the notationA[µν] = 1

2(A
µν −Aνµ) for the skew-symmetrization andA(µν) = 1

2(A
µν +Aνµ) for

the symmetrization.
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whereẼµ is the‘reduced’ Noether current, which vanishes on shell (see [10]). The reduced
currentẼ is unique, while the superpotential is not, since (9) remains unchanged ifUµν is
redefined by the addition of the divergence of any skew-symmetric quantityYµνρ = Y [νµρ] .
It can be found that equation (9) has an explicit solution given by

Ẽµ = (wµi − ∂ρwρµi )θ i + wµρi ∂ρθ i (10)

Uµρ = (t [µρ]
i + ∂ν t̃ν[µρ]

i )θ i + t̃µρνi ∂νθ
i (11)

wheret̃µρνi = 4
3t

[µρ]ν
i . This gives explicit formulae for a superpotential in the case of theories

of total order at most 3. It should be noticed that the ‘lowest’ coefficientst
µ

i do not enter
this explicit expression (11); therefore, this suggests that superpotentials are, in a suitable
sense, ‘algebraically simpler’ then the corresponding Noether currents.

We should also remark that formula (11) seems to provide a ‘canonical’ expression for
the superpotential; but, in general, this is not true. In fact, equation (11) explicitly depends
on the local coordinate system we have chosen as well as the transformation properties of
the coefficients appearing in (6). Nevertheless, as we shall see below, such a canonical
expression will be possible under some additional assumption.

As a general class of examples including theories of gravity (which in fact we shall need
in the following) let us assume that the fieldφ is a field ofgeometric objectsoverM [9], i.e.
we assume that under coordinate changes inM the fieldφ transforms properly through laws
which depend only on a finite number of the partial derivatives of the coordinate change
itself†. We assume also that the Lagrangian isnatural (or, equivalently,reparametrization
invariant), in the sense that the lift of all diffeomorphisms ofM transformL as a scalar
density of weight 1. This means that, at the infinitesimal level, one has

δ∗φ = Lξφ (12)

and

δ∗L = LξL = ∂α(ξαL) (13)

whereξ = ξα∂α is an arbitrary vectorfield onM (i.e. an infinitesimal diffeomorphism) and
Lξ denotes the Lie derivative alongξ .

As a consequence, equation (3) can be written as follows:

∂µE
µ ≡ ∂µ[%µ(φ, δξφ)− ξµL] = −δL

δφ
Lξφ

whereEµ ≡ Eµ(ξ) is the appropriate Noether current evaluated along the infinitesimal
symmetry given byξ , called nowenergy–momentum flow. It is known that the Lie derivative
of any geometric object can be expressed by means of covariant derivatives with respect
to an arbitrary symmetric linear connection onM. In particular, we may expand the Lie
derivativeLξφ as a linear combination ofξ and its covariant derivatives, i.e. we write

Lξφ = 8αξ
α +8ρ

α∇ρξα + · · · . (14)

Suppose again‡ that the total order of the theory is at most 3. This implies global and
covariant decompositions

Eµ ≡ Eµ(ξ) = T µα ξα + T µρα ∇ρξα + T µρσα ∇ρ∇σ ξα (15)
δL

δφ
δξφ ≡ W(ξ) = Wαξ

α +Wρ
α∇ρξα +Wρσ

α ∇ρ∇σ ξα. (16)

† Tensors or linear connections are geometric objects, while arbitrary gauge fields are not.
‡ This includes all standard metric theories of gravity (k = 2, s = 1) as well as so-called first-order formalism
(or Palatini), withk = 1, s = 2 (Yang–Mills theories havek = 1, s = 1).
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According to the general techniques developed in [10] we therefore get covariant versions
of equations (9)–(11), i.e.

Wµ −∇νWν
µ +∇ν∇ρWνρ

µ = 0 (17)

as a generalized Bianchi identity;

Ẽµ = (Wµ
α −∇ρWρµ

α )ξα +Wµρ
α ∇ρξα (18)

as a reduced energy flow; and finally

Uµρ = (T [µρ]
α +∇ν T̃ ν[µρ]

α )ξα + T̃ µρνα ∇νξα (19)

where T̃ µρνα = 4
3T

[µρ]ν
α (recall thatT µ[ρν]

α = 0). Equation (19) gives the required formula
for a canonical superpotential in the case of natural theories of total order at most 3 (see
[10]).

As an example one can consider the superpotential obtained from the Einstein–Hilbert
(purely metric) gravitational Lagrangian (here notation is standard)

LEH(g, ∂g, ∂
2g) = |detg| 12gµνRµν

which is given by

U
µν
EH(ξ) = |detg| 12 (∇µξν −∇νξµ)

and it is known as theKomar superpotential†. It has recently been shown that the Komar
expression is ‘universal’ in the following sense: for a large class of nonlinear gravitational
Lagrangians (in the first-order ‘Palatini’ formalism), the superpotential does not depend on
the Lagrangian and is in fact equal to the Komar superpotential‡ [12, 13].

In some mathematical literature currents admitting superpotentials are calledtrivial
since they lead to strong conservation laws, which hold true irrespective of the form of the
equations of motion [14]. Such currents are also somehow ‘trivial’ from a co-cohomological
viewpoint (in the sense that they define trivial cohomology classes in de Rahm cohomology,
being on shell exact forms). Nevertheless, we remark that they produce physically relevant
quantities, such as e.g. charges, masses and so on.

The advantage of using superpotentials is twofold. First, as we have mentioned before,
they are in general (algebraically) simpler expressions then the corresponding Noether
currents. Moreover, in order to calculate the flux of any conserved quantity they allow,
via Stokes’ theorem, to reduce calculations to the following:∫

6

Eµ d6µ =
∮
∂6

Uµν d6µν.

Here6 is an hypersurface inM of codimension one and∂6 denotes its boundary (which
has codimension two). In the case ofd = 4 spacetime this simply means that the flux of
a conserved quantity through a three-dimensional portion of spacetime can be calculated
as the integral of the superpotential along the two-dimensional boundary∂6, which is a
surface.

† We refer the reader to e.g. [6, 8] for a more exhaustive discussion of the Komar superpotential.
‡ It has been also found that in these cases the universality property holds for the Einstein equations as well.
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4. Chern–Simons gauge theory

To start with, we discuss another physically interesting example, i.e. the Chern–Simons
theory considered as a gauge theory overM = R3 (see also [2, 8]). The Chern–Simons
three-form is written in terms of a connection and its curvature reads as follows

L
(3)
CS= tr(� ∧ ω − 1

3ω ∧ ω ∧ ω) (20)

whereω = Aµ dxµ is a connection one-form,Aµ is a matrix-valued† gauge potential,
� = dω+ω∧ω = 1

2Fµν dxµ∧ dxν is its curvature two-form,Fµν = ∂µAν−∂νAµ+[Aµ,Aν ]
is the gauge field strength and tr denotes the matrix trace.

The corresponding Lagrangian densityL(3)CS= LCSdx1 ∧ dx2 ∧ dx3 written in terms of
more physically relevant quantities is

LCS= 1
2ε
µνρ tr(FµνAρ − 2

3AµAνAρ) (21)

whereεµνρ is the totally skew-symmetric Levi-Civita symbol ind = 3.
In this case the first variation formula (1) reads as

δLCS= εµνρ tr(FµνδAρ)− ∂µ[εµνρ tr(AνδAρ)] (22)

and this givesFµν = 0 as the equation of motion, which means� = 0, i.e. that only flat
connections are solutions of the equations of motion.

As a symmetry one can consider any infinitesimal gauge transformation

δχAµ = Dµχ (23)

whereχ is an arbitrary (matrix-valued) function andDµ = ∂µ+[Aµ, ·] denotes the covariant
derivative with respect to the connectionω. It is known from transformation properties of
the LagrangianLCS (see e.g. [2, 5]) that the following holds:

δχLCS= ∂µ[εµνρ tr(Aν∂ρχ)]. (24)

Replacing now (22)–(24) into equation (3) we get

εµνρ tr(FµνDρχ) = ∂µEµCS(χ) (25)

where

E
µ

CS(χ) = 2εµνρ tr(AνAρχ)+ 2εµνρ tr(Aν∂ρχ)

= −2εµνρ tr(AνAρχ)+ 2εµνρ tr(AνDρχ) (26)

is the expression for the Noether current stemming from the gauge invariance ofICS.
Therefore, indentifying the corresponding coefficients in (26) with those in (7), we obtain
with the help of (11) the following superpotential (see also [8]):

U
µρ

CS(χ) = 2εµνρ tr(Aνχ). (27)

The left-hand side of (25), after expanding it as a differential operator acting onχ , gives
rise (see also equation (8)) to the generalized Bianchi identity

εµνρDρFµν = 0 (28)

which, in dimensiond = 3, is known to be equivalent to the standard Bianchi identity for
the gauge fieldFµν , i.e.

DρFµν +DµFνρ +DνFρµ = 0.

† In fact, Aµ belongs to the Lie algebra of some gauge groupG, which for simplicity we assume here to be
represented in terms of (complex) matrices.
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A similar analysis can be performed for the diffeomorphism invariance ofLCS; in this
case one has†:

δξAµ ≡ LξAµ = ξα∂αAµ +Aα∂µξ
α (29)

and

δξLCS≡ LξLCS= ∂α(ξαLCS). (30)

Now we have:

Eµ(ξ) = ξµLCS+ εµνρ tr(Aν∂αAρ)ξ
α + εµνρ tr(AνAα)∂ρξ

α (31)

from which it follows via (11)

U
µρ

CS(ξ) = εµνρ tr(AνAα)ξ
α (32)

since only the last term in (31) contributes into (32).
The generalized Bianchi identity therefore takes the form

εµνρ tr(DρFµνAα − FµνFαρ) = 0 (33)

in which the first term vanishes owing to (28), so that (33) reduces in fact to the funny
algebraic identity

εµνρ tr(FµνFαρ) = 0 (34)

which holds true forany gauge field in dimension three!
For a comparison, we recall the reader that the gauge and diffeomorphism invariance

of Yang–Mills Lagrangians in four dimensions lead instead to

U
µρ
YM (χ) = tr(F µρχ) (35)

U
µρ
YM (ξ) = tr(F µρAα)ξ

α. (36)

Some authors [16, 17] prefer to deal with so-calledimproved diffeomorphisms

δ̂ξAµ ≡ ξαFαµ = δξAµ −Dµ(ξ
αAα) (37)

which differ from the Lie derivative (29) only by a gauge transformationχ̂ = ξαAα. Direct
calculations show that

Û
µρ

CS(ξ) = Uµρ

CS(ξ)− Uµρ

CS(χ̂) = εµρν tr(AνAα)ξ
α (38)

i.e. it differs from (32) by a sign. Similarly, one finds from (35)–(37)

Û
µρ
YM (ξ) = 0. (39)

It means that there are no, in the Yang–Mills theory, non-trivial charges corresponding to
these transformations.

† Under diffeomorphisms the gauge potentialAµ behaves as a one-form andLCS as a scalar density of weight
one.
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5. Chern–Simons gravity

We now proceed to discuss a less studied case of Chern–Simons gravity considered as a
purely metric theory overR3. Therefore, the only dynamical variable is a Riemannian (or
pseudo-Riemannian) metricg = gµν . The Lagrangian density is

LCSG= 1
2ε
µνρ tr(RµνΓρ − 2

3ΓµΓνΓρ)

= 1
2ε
µνρ(Rαβµν0

β
αρ − 2

30
α
βµ0

β
σν0

σ
αρ) (40)

where, using the notation introduced in the previous section, we have nowω = Γµ dxµ,
Γµ is the matrix-valued† one-form of Riemannian connection,� = 1

2Rµν dxµ ∧ dxν is the
Riemann curvature two-form andRµν = ∂µΓν − ∂νΓµ+ [Γµ,Γν ] is the Riemann curvature
tensor written in matrix notation. For the sake of completeness we also recall two basic
formulae of Riemannian geometry

0αβµ = 1
2g

ασ (∂βgµσ + ∂µgσβ − ∂σ gβµ) (41)

Rαβµν = ∂µ0αβν − ∂ν0αβµ + 0ασµ0σβν − 0ασν0σβµ (42)

as well as the following identity

Rαβµν = δαµRβν − δαν Rβµ + gβνRαµ − gβµRαν + 1
2R(gβµδ

α
ν − gβνδαµ) (43)

which holds true only in dimensiond = 3 (see e.g. [15])‡. Here,Rµν ≡ Rαµαν denotes the
Ricci tensor andR = Rαα is the Ricci scalar§ of g.

Notice thatLCSG depends on the metricg only through the Riemannian connection (41).
The relation (22) still remains valid

δLCSG= εµνρ tr(RµνδΓρ)− ∂µ[εµνρ tr(ΓνδΓρ)]

but it does not correspond now to the first variation formula (1), sinceΓρ is no longer a
dynamical variable in our theory. Accordingly, one has to replaceδΓρ in the first term by
means of the well known ‘Palatini formula’

δ0αβρ = 1
2g

ασ (∇βδgρσ +∇ρδgσβ −∇σ δgβρ). (44)

Making use of equation (43) together with the contracted Bianchi identity∇αRαµ = 1
2∇µR

one finds

εµνρRβαµνδ0
α
βρ = −2εµνρ∇µRαν δgαρ + ∂µ(2εµνρRαν δgαρ). (45)

With the help of the tricky identity which holds true for any quantitySσµν

2εµν[ρSσ ]
µν ≡ ερσβ(Sααβ − Sαβα) (46)

the symmetric part of the first term of the right-hand side in (45) can be converted into the
following form

−2εµνρ∇µ(Rαν − 1
4δ
α
ν R)δgαρ.

Therefore, the first variation formula now reads as

δLCSG= −2Cαρδgαρ + ∂µ[εµνρ(2Rαν δgαρ − tr(ΓνδΓρ))] (47)

where

Cαρ = εµνρ∇µ(Rαν − 1
4δ
α
ν R) (48)

† HereΓµ ≡ 0αβµ andRµν ≡ Rαβµν are represented as 3× 3 matrices and the upper index is the row index.
‡ This means, in fact, that in three dimensions the two notions of Ricci flatness and flatness coincide: i.e. that
gravity is trivial in dimensiond = 3. This is why a coupling with Chern–Simons term enriches the theory.
§ We shall be frequently usingg for raising and lowering indices.
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is the so-calledCotton tensor†, the vanishing of which gives, in the case ofLCSG, the
Euler–Lagrange equations of motion. It is also known (see e.g. [2, 15]) that the Cotton
tensor is symmetric, traceless (Cαα = 0), divergence-free (∇αCαβ = 0) and it vanishes if and
only if the metricg is conformally flat (≡ conformal to a flat one).

As a symmetry transformation, consider then a one-parameter group of diffeomorphisms
generated by the vectorfieldξ = ξα∂α. In this case one can use the well known expressions

δξg ≡ Lξ gαρ = ∇αξρ +∇ρξα (49)

and

δξΓρ ≡ Lξ0βαρ = ξσRβασρ +∇α∇ρξβ. (50)

In a Riemannian case we are dealing with, the last formula is, of course, equivalent to the
Palatini one, if one replacesδg in (44) by (49).

Thus, our task is now to calculateδξLCSG directly from its transformation properties.
Notice that the transformation rule for the linear connection

0̄λνµ =
∂x̄λ

∂xρ
0
ρ
αβ

∂xα

∂x̄ν

∂xβ

∂x̄µ
+ ∂x̄

λ

∂xρ

∂2xρ

∂x̄ν∂x̄µ

=
(
∂x̄λ

∂xρ
0
ρ
αβ

∂xα

∂x̄ν
+ ∂x̄

λ

∂xρ

∂

∂xβ

[
∂xρ

∂x̄ν

])
∂xβ

∂x̄µ

is the composition of a vector- and of a pure gauge transformation. In other words one has

Γ̄µ = (JΓβJ−1+ J∂βJ−1)
∂xβ

∂x̄µ
(51)

whereJ = ∂x̄λ

∂xρ
is the Jacobian matrix. Therefore, at the infinitesimal level (x̄α = xα − ξα),

δξLCSG is the sum of two terms‡ of the type (24) and (13). More precisely we have obtained

δξLCSG= ∂µ[ξµLCSG+ εµνρ tr(Γν∂ρχ̄)] (52)

whereχ̄ = ∂ξβ

∂xα
is an infinitesimal version of the inverse Jacobian matrix. We see that the

LagrangianLCSG is not natural, but it is in some sensequasi-natural, i.e. it differs from a
natural one by a total derivative.

In a similar way one deduces from (51) that the following holds

δξΓρ = ∇ρχ̄ + ξα∂αΓρ + Γα∂ρξα (53)

as the sum of (23) and (29). Here∇ρχ̄ denotes the ‘formal’ covariant differential of̄χ ,
formally treated as a tensor of rank(1, 1), i.e. we set∇ρχ̄ = ∂ρχ̄ + [Γρ, χ̄ ]. Of course, it
can be directly checked that equations (50) and (53) are equivalent.

Inserting now all necessary expressions in equation (3) we obtain the variation formula
under the form

2CαρLξ gαρ = −∂µEµCSG(ξ) (54)

where

E
µ

CSG(ξ) = ξµLCSG+ εµνρ{tr(Γν∂αΓρ)ξα − 2Rτν (δ
σ
τ gρα + δσρ gτα)∇σ ξα

+ tr(Γν [Γρ, χ̄ ])+ tr(ΓνΓα)∂ρξα + 2 tr(Γν∂ρχ̄)} (55)

is the energy–momentum complex for the Chern–Simons gravitational Lagrangian (40). We
are now in position to obtain the corresponding superpotentialU

µρ

CSG. Since superpotentials

† In fact,Cαρ is a tensor denity of weight one.

‡ In fact, we have to substituteχ 7→ ∂ξβ

∂xα
in equation (24).
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are additive quantities one can calculate the contributions from all terms of (55) separately.
Moreover, the first two terms are of the lowest order and do not contribute to the
superpotential.

To obtain the contribution from the third term of (55) one will use the covariant
formula (19). First we rewrite this term under the formT µσα ∇σ ξα, where T µσα =
−2εµνρRβν (δ

σ
β gρα+δσρ gβα). Then, by making use of the identity (46),T [µσ ]

α can be converted
into the explicit skew-symmetric formεµσν(3Rνα − Rgνα). This gives rise to

3U
µρ

CSG= εµνρ(Rgνα − 3Rνα)ξ
α. (56)

Similarly, contributions coming from the fourth and the fifth terms are easy to calculate
directly by using (11) and (46):

4U
µρ

CSG+ 5U
µρ

CSG= εµνρ{[Γσ ,Γν ]σα + tr(ΓνΓα)}ξα (57)

where [Γσ ,Γν ]σα = 0σβσ0βαν − 0σβν0βασ , which due to the symmetry of0βασ reduces (57) to
the form

4U
µρ

CSG+ 5U
µρ

CSG= εµνρ(0σβσ0βαν)ξα. (58)

The sixth and last term in (55) is of the second order. We write it astµρσα ∂ρ∂σ ξ
α, with

tµρσα = 2εµν(ρ0σ)αν . One needs the shorthandt̃µρσα = 4
3t

[µρ]σ
α (see (11)); a direct calculation

with the help of another tricky identity

2εµν[ρAσ ]
ν ≡ ερσν(Aµν − δµν Aββ) (59)

then gives rise tõtµρσα = 2εµνρ0σαν + 2
3ε
µρσ0

β

αβ . Since6U
µρ

CSG= ∂ν t̃ν[µρ]
α ξα + t̃µρσα ∂σ ξ

α, one
gets

6U
µρ

CSG= 1
3ε
µνρ(∂ν0

β

αβ − 3∂β0
β
αν)ξ

α + 2
3ε
µνρ(30σαν − δσν 0βαβ)∂σ ξα. (60)

We can now formulate our main result: the superpotentialU
µρ

CSG(ξ) appears as the sum:

U
µρ

CSG(ξ) = 3U
µρ

CSG+ 4U
µρ

CSG+ 5U
µρ

CSG+ 6U
µρ

CSG (61)

with addenda given by (56), (58) and (60).
The left-hand side of (54) taking into account (49) has the form 4Cαβ∇αξβ . This, of

course, leads via (17) to a divergence-free property of the Cotton tensor as a generalized
Bianchi identity.
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